2.1 笛卡尔坐标系下的三维控制方程
2.1.1 浅水方程
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=S
\tag{2.1}
$$
\begin{align}
\frac{\partial u}{\partial t}
+\frac{\partial u^{2}}{\partial x}
+\frac{\partial (vu)}{\partial y}
+\frac{\partial (wu)}{\partial z}
&= fv-g\frac{\partial \eta}{\partial x}
-\frac{1}{\rho_{0}}\frac{\partial p_{a}}{\partial x}
-\frac{g}{\rho_{0}}\int_{z}^{\eta}\frac{\partial \rho}{\partial x}\,dz \notag\\
&\quad -\frac{1}{\rho_{0}h}\left(\frac{\partial s_{xx}}{\partial x}+\frac{\partial s_{xy}}{\partial y}\right)
+F_{u}\\
&\quad+\frac{\partial}{\partial z}\!\left(\nu_{t}\frac{\partial u}{\partial z}\right)
+u_{s}S
\tag{2.2}
\end{align}
$$
\begin{align}
\frac{\partial v}{\partial t}
+\frac{\partial v^{2}}{\partial y}
+\frac{\partial (uv)}{\partial x}
+\frac{\partial (wv)}{\partial z}
&= -fu-g\frac{\partial \eta}{\partial y}
-\frac{1}{\rho_{0}}\frac{\partial p_{a}}{\partial y}
-\frac{g}{\rho_{0}}\int_{z}^{\eta}\frac{\partial \rho}{\partial y}\,dz \notag\\
&\quad-\frac{1}{\rho_{0}h}\left(\frac{\partial s_{yx}}{\partial x}+\frac{\partial s_{yy}}{\partial y}\right)
+F_{v}\\
&\quad+\frac{\partial}{\partial z}\!\left(\nu_{t}\frac{\partial v}{\partial z}\right)
+v_{s}S
\tag{2.3}
\end{align}
$$
F_u=\frac{\partial}{\partial x}\!\left(2A\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\!\left(A\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right)
\tag{2.4}
$$
F_v=\frac{\partial}{\partial x}\!\left(A\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right)
+\frac{\partial}{\partial y}\!\left(2A\frac{\partial v}{\partial y}\right)
\tag{2.5}
$$
\begin{align}
\frac{\partial \eta}{\partial t}
+u\frac{\partial \eta}{\partial x}
+v\frac{\partial \eta}{\partial y}
-w &= 0,\quad
\left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)
=\frac{1}{\rho_{0}\nu_{t}}\left(\tau_{sx},\tau_{sy}\right)
\tag{2.6}
\end{align}
$$
\begin{align}
u\frac{\partial d}{\partial x}
+v\frac{\partial d}{\partial y}
+w &= 0, \quad
\left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)
=\frac{1}{\rho_{0}\nu_{t}}\left(\tau_{bx},\tau_{by}\right)
\tag{2.7}
\end{align}
$$
\frac{\partial h}{\partial t}
+\frac{\partial (h\bar{u})}{\partial x}
+\frac{\partial (h\bar{v})}{\partial y}
=hS+\hat{P}-\hat{E}
\tag{2.8}
$$
其中 :$\hat{P}$与$\hat{E}$分别为降水率与蒸发率;$\bar{u}$、$\bar{v}$为水深平均速度:
h\bar{u}=\int_{-d}^{\eta}u\,dz,\qquad
h\bar{v}=\int_{-d}^{\eta}v\,dz
\tag{2.9}
$$
\rho=\rho(T,s)
\tag{2.10}
$$
2.1.2盐度与温度输运方程
\frac{\partial T}{\partial t}
+\frac{\partial uT}{\partial x}
+\frac{\partial vT}{\partial y}
+\frac{\partial wT}{\partial z}
=F_T+\frac{\partial}{\partial z}\!\left(D_v\frac{\partial T}{\partial z}\right)+\hat{H}+T_s S
\tag{2.11}
$$
\frac{\partial s}{\partial t}
+\frac{\partial us}{\partial x}
+\frac{\partial vs}{\partial y}
+\frac{\partial ws}{\partial z}
=F_s+\frac{\partial}{\partial z}\!\left(D_v\frac{\partial s}{\partial z}\right)+s_s S
\tag{2.12}
$$
\left(F_T,F_s\right)
=
\left[
\frac{\partial}{\partial x}\!\left(D_h\frac{\partial}{\partial x}\right)
+\frac{\partial}{\partial y}\!\left(D_h\frac{\partial}{\partial y}\right)
\right](T,s)
\tag{2.13}
$$
其中:
D_h=\frac{A}{\sigma_T},\qquad
D_v=\frac{\nu_t}{\sigma_T}
\tag{2.14}
$$
D_v\frac{\partial T}{\partial z}
=\frac{Q_n}{\rho_0 c_p}+T_p\hat{P}-T_e\hat{E}
\tag{2.15}
$$
\frac{\partial T}{\partial z}=0
\tag{2.16}
$$
\frac{\partial s}{\partial z}=0
\tag{2.17}
$$
\frac{\partial s}{\partial z}=0
\tag{2.18}
$$
\hat{E}=
\begin{cases}
\dfrac{q_v}{\rho_0 l_v}, & q_v>0,\\[6pt]
0, & q_v\le 0,
\end{cases}
\tag{2.19}
$$
2.1.3 标量输运方程
\frac{\partial C}{\partial t}
+\frac{\partial (uC)}{\partial x}
+\frac{\partial (vC)}{\partial y}
+\frac{\partial (wC)}{\partial z}
=F_C+\frac{\partial}{\partial z}\!\left(D_v\frac{\partial C}{\partial z}\right)-k_p C+C_s S
\tag{2.20}
$$
F_C=
\left[
\frac{\partial}{\partial x}\!\left(D_h\frac{\partial}{\partial x}\right)
+\frac{\partial}{\partial y}\!\left(D_h\frac{\partial}{\partial y}\right)
\right]C
\tag{2.21}
$$
2.1.4 湍流模型
(1)垂向涡黏系数(Vertical eddy viscosity)
\nu_t=
U_\tau\left(
c_1、frac{(z+d)}{h}+c_2\left(\frac{z+d}{h}\right)^2
\right)
\tag{2.22}
$$
\nu_t=\nu_t^{*}(1+a\,Ri)^{-b}
\tag{2.23}
$$
Ri=
-\frac{g}{\rho_0}
\frac{\partial \rho}{\partial z}
\left(
\left(\frac{\partial u}{\partial z}\right)^2+\left(\frac{\partial v}{\partial z}\right)^2\right)^{-1}
\tag{2.24}
$$
\nu_t=c_\mu\frac{k^2}{\varepsilon}
\tag{2.25}
$$
\frac{\partial k}{\partial t}
+\frac{\partial (uk)}{\partial x}
+\frac{\partial (vk)}{\partial y}
+\frac{\partial (wk)}{\partial z}
=
F_k
+\frac{\partial}{\partial z}\!\left(\frac{\nu_t}{\sigma_k}\frac{\partial k}{\partial z}\right)
+P+B-\varepsilon
\tag{2.26}
$$
\frac{\partial \varepsilon}{\partial t}
+\frac{\partial (u\varepsilon)}{\partial x}
+\frac{\partial (v\varepsilon)}{\partial y}
+\frac{\partial (w\varepsilon)}{\partial z}
=
F_\varepsilon
+\frac{\partial}{\partial z}\!\left(\frac{\nu_t}{\sigma_\varepsilon}\frac{\partial \varepsilon}{\partial z}\right)
+\frac{\varepsilon}{k}
\left(
c_{\varepsilon1}P
+c_{\varepsilon3}B
-c_{\varepsilon2}\varepsilon
\right)
\tag{2.27}
$$
P=\frac{\tau_{xz}}{\rho}\frac{\partial u}{\partial z}
+\frac{\tau_{yz}}{\rho}\frac{\partial v}{\partial z}
\approx v_t
\left(
\left(\frac{\partial u}{\partial z}\right)^2
+\left(\frac{\partial v}{\partial z}\right)^2
\right)
\tag{2.28}
$$
B=-\frac{\nu_t}{\sigma_t}N^2
\tag{2.29}
$$
N^2=-\frac{g}{\rho_0}\frac{\partial \rho}{\partial z}
\tag{2.30}
$$
\left(F_k,F_\varepsilon\right)
=
\left[
\frac{\partial}{\partial x}\!\left(D_h\frac{\partial}{\partial x}\right)
+\frac{\partial}{\partial y}\!\left(D_h\frac{\partial}{\partial y}\right)
\right](k,\varepsilon)
\tag{2.31}
$$
| $c_\mu$ | $c_{1 \varepsilon}$ | $c_{2 \varepsilon}$ | $c_{3 \varepsilon}$ | $\sigma_t$ | $\sigma_k$ | $\sigma_\varepsilon$ |
| 0.09 | 1.44 | 1.92 | 0 | 0.9 | 1.0 | 1.3 |
\begin{aligned}
k=\frac{1}{\sqrt{c_\mu}}U_{\tau s}^2,
\quad
\varepsilon&=\frac{U_{\tau s}^3}{\kappa\,\Delta z_s},
\quad U_{\tau s}>0
\end{aligned}
\tag{2.32}
$$
\frac{\partial k}{\partial z}=0,
\quad
\varepsilon=\frac{\left(k\sqrt{c_/mu}\right)^{3/2}}{akh},
\quad U_{\tau s}=0
\tag{2.33}
$$
\begin{aligned}
k=\frac{1}{\sqrt{c_\mu}} U_{\tau b}^2,
\quad
\varepsilon&=\frac{U_{\tau b}^3}{\kappa\,\Delta z_b}
\end{aligned}
\tag{2.34}
$$
(2)水平涡黏系数(Horizontal eddy viscosity)
A=c_s^2\,l^2\,\sqrt{2S_{ij}S_{ij}}
\tag{2.35}
$$
S_{ij}=\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\right),
\qquad i,j=1,2
\tag{2.36}
$$
2.1.5 笛卡尔与$sigma$坐标下的控制方程
x'=x,\qquad y'=y,\qquad \sigma=\frac{z-z_b}{h}
\tag{2.37}
$$
\frac{\partial}{\partial z}=\frac{1}{h}\frac{\partial}{\partial \sigma}
\tag{2.38}
$$
\left(\frac{\partial}{\partial x},\frac{\partial}{\partial y}\right)
=
\left(
\frac{\partial}{\partial x'}
-\frac{1}{h}
\left(\frac{\partial d}{\partial x'}+\sigma\frac{\partial h}{\partial x}\right)\frac{\partial}{\partial \sigma}
,\quad
\frac{\partial}{\partial y'}
- \frac{1}{h}
\left(\frac{\partial d}{\partial y}-\sigma\frac{\partial h}{\partial y}\right)
\frac{\partial}{\partial \sigma}\right)
\tag{2.39}
$$
\frac{\partial h}{\partial t}
+\frac{\partial (hu)}{\partial x'}
+\frac{\partial (hv)}{\partial y'}
+\frac{\partial (h \omega)}{\partial \sigma}
=hS
\tag{2.40}
$$
\begin{align}
\frac{\partial (hu)}{\partial t}
+\frac{\partial (huu)}{\partial x'}
+\frac{\partial (hvu)}{\partial y'}
+\frac{\partial (h \omega u)}{\partial \sigma}
&=
fhv
-gh\frac{\partial \eta}{\partial x'}
-\frac{h}{\rho_0}\frac{\partial p_a}{\partial x'}
-\frac{gh}{\rho_0}\int_{z}^{\eta}\frac{\partial \rho}{\partial x}\,dz \notag\\
&\quad
-\frac{1}{\rho_0}\left(\frac{\partial s_{xx}}{\partial x}+\frac{\partial s_{xy}}{\partial y}\right)
+hF_u
+\frac{\partial}{\partial \sigma}\left(\frac{v_v}{h}\frac{\partial u}{\partial \sigma}\right)
+hu_sS
\tag{2.41}
\end{align}
$$
\begin{align}
\frac{\partial (hv)}{\partial t}
+\frac{\partial (huv)}{\partial x'}
+\frac{\partial (hvv)}{\partial y'}
+\frac{\partial (h \omega v)}{\partial \sigma}
&=
-fhu
-gh\frac{\partial \eta}{\partial y'}
-\frac{h}{\rho_0}\frac{\partial p_a}{\partial y'}
-\frac{gh}{\rho_0}\int_{z}^{\eta}\frac{\partial \rho}{\partial y}\,dz \notag\\
&\quad
-\frac{1}{\rho_0}\left(\frac{\partial s_{yx}}{\partial x}+\frac{\partial s_{yy}}{\partial y}\right)
+hF_v
+\frac{\partial}{\partial \sigma}\left(\frac{v_v}{h}\frac{\partial v}{\partial \sigma}\right)
+hv_sS
\tag{2.42}
\end{align}
$$
\frac{\partial (hT)}{\partial t}
+\frac{\partial (huT)}{\partial x'}
+\frac{\partial (hvT)}{\partial y'}
+\frac{\partial (h \omega T)}{\partial \sigma}
=
hF_T+\frac{\partial}{\partial \sigma}\left(\frac{D_v}{h}\frac{\partial T}{\partial \sigma}\right)
+h\hat{H}+hT_sS
\tag{2.43}
$$
\frac{\partial (hs)}{\partial t}
+\frac{\partial (hus)}{\partial x'}
+\frac{\partial (hvs)}{\partial y'}
+\frac{\partial (h \omega s)}{\partial \sigma}
=
hF_s+\frac{\partial}{\partial \sigma}\left(\frac{D_v}{h}\frac{\partial s}{\partial \sigma}\right)
+hs_sS
\tag{2.44}
$$
\frac{\partial (hk)}{\partial t}
+\frac{\partial (huk)}{\partial x'}
+\frac{\partial (hvk)}{\partial y'}
+\frac{\partial (h \omega k)}{\partial \sigma}
=
hF_k+\frac{\partial}{\partial \sigma}\!\left(\frac{\nu_t}{\sigma_k h}\frac{\partial k}{\partial \sigma}\right)
+hP+hB-h\varepsilon
\tag{2.45}
$$
\frac{\partial (h\varepsilon)}{\partial t}
+\frac{\partial (hu\varepsilon)}{\partial x'}
+\frac{\partial (hv\varepsilon)}{\partial y'}
+\frac{\partial (h \omega \varepsilon)}{\partial \sigma}
=
hF_\varepsilon+\frac{1}{h}\frac{\partial}{\partial /sigma}
\left(\frac{v_t}{\sigma_\varepsilon}\frac{\partial \varepsilon}{partial \sigma}\right)
+h\frac{\varepsilon}{k}
\left(c_{1\varepsilon}P+c_{3\varepsilon}B-c_{c\varepsilon}\varepsilon\right)
\tag{2.46}
$$
\frac{\partial (hC)}{\partial t}
+\frac{\partial (huC)}{\partial x'}
+\frac{\partial (hvC)}{\partial y'}
+\frac{\partial (h \omega C)}{\partial \sigma}
=
hF_C+\frac{\partial}{\partial \sigma}\left(\frac{D_v}{h}\frac{\partial C}{\partial \sigma}\right)
-hk_pC+hC_sS
\tag{2.47}
$$
$$
\omega=\frac{1}{h}\left[\displaystyle{w+u}\frac{\partial d}{\partial x'}+V\frac{\partial d}{\partial y’}-\sigma\biggl(\frac{\partial h}{\partial t}+u\frac{\partial h}{\partial x’}+V\frac{\partial h}{\partial y’}\biggr)\right]
\tag{2.48}
$$
$$
h F_{u}\approx{\frac{\partial}{\partial x}}\biggl(2h A{\frac{\partial u}{\partial x}}\biggr)+{\frac{\partial}{\partial y}}\biggl(h A\biggl({\frac{\partial u}{\partial y}}+{\frac{\partial v}{\partial x}}\biggr)\biggr)
\tag{2.49}
$$
$$
h F_{\nu}\approx{\cfrac{\partial}{\partial x}}\left(h A\left({\cfrac{\partial u}{\partial y}}+{\cfrac{\partial v}{\partial x}}\right)\right)+{\cfrac{\partial}{\partial y}}\left(2h A{\cfrac{\partial v}{\partial y}}\right)
\tag{2.50}
$$
在自由表面与底部($sigma$ 坐标)处的边界条件为: