← 回到首页 Skip to main content

参考文献

[1] Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm Pure Appl Math 1954;7:159-93.  
[2] Aris R. Vectors, tensors and the basic equations of fluid mechanics. New York: Dover Publ. Inc.; 1989.  
[3] Schlichting H. Boundary layer theory. 7th ed. New York: McGraw-Hill; 1979.  
[4] White FM. Viscous fluid flow. New York: McGraw-Hill; 1991.  
[5] Stokes GG. On the theories of internal friction of fluids in motion. Trans Camb Phil Soc 1845;8:287-305.  
[6] Gad-el-Hak M. Questions in fluid mechanics: Stokes' hypothesis for a Newtonian, isotropic fluid. J Fluids Eng 1995;117:3-5.  
[7] Vinokur M. Conservation equations of gas dynamics in curvilinear coordinate systems. J Comput Phys 1974;14:105-25.  
[8] Hirsch C. Numerical computation of internal and external flows, vols. 1 and 2, Chichester, UK: John Wiley and Sons; 1988.  
[9] Pulliam TH, Steger JL. Recent improvements in efficiency, accuracy, and convergence for implicit approximate factorization algorithms. AIAA Paper 85-0360; 1985.  
[10] Thomas PD, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA J 1979;17:1030-37.  
[11] Lesoinne M, Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations. AIAA Paper 95-1709; 1995 [also in Comp Meth Appl Mech Eng 1996;134:71-90].  
[12] Guillard H, Farhat C. On the significance of the GCL for flow computations on moving meshes. AIAA Paper 99-0793; 1999.  
[13] Zierep J. Vorlesungen über theoretische Gasdynamik (Lectures on theoretical gas dynamics). Karlsruhe: G. Braun Verlag; 1963.  
[14] Liepmann HW, Roshko A. Elements of gas dynamics. Mineola, NY: Dover Publications; 2002.  
[15] Srinivasan S, Weilmuenster KJ. Simplified curve fits for the thermodynamic properties of equilibrium air. NASA RP-1181; 1987.  
[16] Schmatz MA. Hypersonic three-dimensional Navier-Stokes calculations for equilibrium gas. AIAA Paper 89-2183; 1989.  
[17] Mundt Ch, Keraus R, Fischer J. New, accurate, vectorized approximations of state surfaces for the thermodynamic and transport properties of equilibrium air. ZFW 1991;15:179-84.  
[18] Rinaldi E, Pecnik R, Colonna P. Exact Jacobians for implicit Navier-Stokes simulations of equilibrium real gas flows. J Comput Phys 2014;270:459-77.  
[19] Bussing TRA, Murman EM. Finite-volume method for the calculation of compressible chemically reacting flows. AIAA J 1988;26:1070-78.  
[20] Molvik GA, Merkle CL. A set of strongly coupled, upwind algorithms for computing flows in chemical non-equilibrium. AIAA Paper 89-0199; 1989.  
[21] Slomski JF, Anderson JD, Gorski JJ. Effectiveness of multigrid in accelerating convergence of multidimensional flows in chemical non-equilibrium. AIAA Paper 90-1575; 1990.  
[22] Shuen JS, Liou MS, van Leer B. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry. J Comput Phys 1990;90:371-95.  
[23] Li CP. Computational aspects of chemically reacting flows. AIAA Paper 91-1574; 1991.  
[24] Shuen J-S, Chen K-H, Choi Y. A coupled implicit method for chemical non-equilibrium flows at all speeds. J Comput Phys 1993;106:306-18.  
[25] Raman V, Fox RO, Harvey AD. Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame. Combust Flame 2004;136:327-50.  
[26] Selle L, Lartigue G, Poinsot T, Koch R, Schildmacher K-U, Krebs W, et al. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust Flame 2004;137:489-505.  
[27] Ajmani K, Mongia H, Lee P. CFD computations of emissions for LDI-2 combustors with simplex and airblast injectors. AIAA Paper 2014-3529; 2014.  
[28] Yu S-T, Chang S-C, Jorgenson PCE, Park S-J, Lai M-C. Basic equations of chemically reactive flow for computational fluid dynamics. AIAA Paper 98-1051; 1998.  
[29] Bakhtar F, Tochai MTM. An investigation of two-dimensional flows of nucleating and wet stream by the time-marching method. Int J Heat Fluid Flow 1980;2:5-18.  
[30] Young JB, Snoeck J. In: Aerothermodynamics of Low Pressure Steam Turbines and Condensers. Moore MJ, Sieverding CH, editors. New York: Springer Verlag; 1987. p. 87-133.  
[31] Bakhtar F, So KS. A study of nucleating flow of steam in a cascade of supersonic blading by the time-marching method. Int J Heat Fluid Flow 1991;12:54-62.  
[32] Young JB. Two-dimensional non-equilibrium wet-steam calculations for nozzles and turbine cascades. Trans ASME J Turbomach 1992;114:569-79.  
[33] White AJ, Young JB. Time-marching method for the prediction of two-dimensional, unsteady flows of condensing steam. AIAA J Propul Power 1993;9:579-87.  
[34] Liberson A, Kosolapov Y, Rieger N, Hesler S. Calculation of 3-D condensing flows in nozzles and turbine stages. In: EPRI Nucleation Workshop, Rochester, New York; October 24-26, 1995.  
[35] Bakhtar F, Mahpeykar MR, Abbas KK. An investigation of nucleating flows of steam in a cascade of turbine blading — theoretical treatment. Trans ASME 1995;117:138-44.  
[36] White AJ, Young JB, Walters PT. Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades. Phil Trans R Soc Lond A 1996;354:59-88.  
[37] Fakhari K. Development of a two-phase Eulerian/Lagrangian algorithm for condensing steam flow. AIAA Paper 2006-597; 2006.  
[38] Fakhari K. Unsteady phenomena in the condensing steam flow of an industrial steam turbine stage. AIAA Paper 2008-1449; 2008.  
[39] Giordano M, Congedo P, Cinnella P. Nozzle shape optimization for wet-steam flows. AIAA Paper 2009-4157; 2009.  
[40] Steger JL. Implicit finite difference simulation of flows about two-dimensional arbitrary geometries. AIAA J 1978;17:679-86.  
[41] Pulliam TH, Steger JL. Implicit finite difference simulations of three-dimensional compressible flows. AIAA J 1980;18:159-67.  
[42] Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 1972;15:1787-806.  
[43] Aslan AR, Grundmann R. Computation of three-dimensional subsonic flows in ducts using the PNS approach. ZFW 1990;14:373-80.  
[44] Kirtley KR, Lakshminarayana B. A multiple passspace-marching method for three-dimensional incompressible viscous flow. ZFW 1992;16:49–59.  
[45] Hollenbäck DM, Blom GA. Application of a parabolized Navier-Stokes code to an HSCT configuration and comparison to wind tunnel test data. AIAA Paper 93-3537; 1993.  
[46] Krishnan RR, Eidson TM. An efficient, parallel space-marching Euler solver for HSCT research. AIAA Paper 95-1749; 1995.  
[47] Nakahashi K, Saitoh E. Space-marching method on unstructured grid for supersonic flows with embedded subsonic regions. AIAA Paper 96-0418; 1996.  
[48] Yamaleev NK, Ballmann J. Space-marching method for calculating steady supersonic flows on a grid adapted to the solution. J Comput Phys 1998;146:436-63.  

: