← 回到首页 Skip to main content

2.1 笛卡尔坐标系下的三维控制方程

2.1.1 浅水方程

该模型基于三维不可压缩雷诺平均 Navier–Stokes 方程的求解,并采用 Boussinesq 假设与静水压力假设。
局地连续方程写为:
$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=S
\tag{2.1}
$$
分别对应 $x$ 与 $y$ 分量的两条水平动量方程为:
$$
\begin{align}
\frac{\partial u}{\partial t}
+\frac{\partial u^{2}}{\partial x}
+\frac{\partial (vu)}{\partial y}
+\frac{\partial (wu)}{\partial z}
&= fv-g\frac{\partial \eta}{\partial x}
-\frac{1}{\rho_{0}}\frac{\partial p_{a}}{\partial x}
-\frac{g}{\rho_{0}}\int_{z}^{\eta}\frac{\partial \rho}{\partial x}\,dz \notag\\
&\quad -\frac{1}{\rho_{0}h}\left(\frac{\partial s_{xx}}{\partial x}+\frac{\partial s_{xy}}{\partial y}\right)
+F_{u}\\
&\quad+\frac{\partial}{\partial z}\!\left(\nu_{t}\frac{\partial u}{\partial z}\right)
+u_{s}S
\tag{2.2}
\end{align}
$$
$$
\begin{align}
\frac{\partial v}{\partial t}
+\frac{\partial v^{2}}{\partial y}
+\frac{\partial (uv)}{\partial x}
+\frac{\partial (wv)}{\partial z}
&= -fu-g\frac{\partial \eta}{\partial y}
-\frac{1}{\rho_{0}}\frac{\partial p_{a}}{\partial y}
-\frac{g}{\rho_{0}}\int_{z}^{\eta}\frac{\partial \rho}{\partial y}\,dz \notag\\
&\quad-\frac{1}{\rho_{0}h}\left(\frac{\partial s_{yx}}{\partial x}+\frac{\partial s_{yy}}{\partial y}\right)
+F_{v}\\
&\quad+\frac{\partial}{\partial z}\!\left(\nu_{t}\frac{\partial v}{\partial z}\right)
+v_{s}S
\tag{2.3}
\end{align}
$$
其中:
$t$ 为时间;$x,y,z$ 为笛卡尔坐标;$\eta$ 为自由表面高程;$d$为静水水深;总水深$h=\eta+d$。
$u,v,w$分别为$x,y,z$方向速度分量;科氏参数 $f=2\Omega\sin\phi$
$(\Omega$ 为地球自转角速度,$\phi$ 为地理纬度);$g$ 为重力加速度。<br>
    $\(\rho\)rho$ 为水体密度;\($s_{xx},s_{xy},s_{yx},s_{yy}$为辐射应力张量分量;$\) 为辐射应力张量分量;
    \(\nu_t\) nu_t$为垂向湍动(涡)黏性系数;$p_a$为大气压;$\(p_a\) 为大气压;\(\rho_0\)rho_0$ 为参考密度。<br>
    \(S\)$S$ 为点源(汇)排放强度;\($(u_s,v_s)\) $为排入环境水体时的水平速度分量。
  </p>

  <p>
    水平应力项采用梯度–应力关系表示,并简化为:
  </p>

  \[
  F_u=\frac{\partial}{\partial x}\!\left(2A\frac{\partial u}{\partial x}\right)
  +\frac{\partial}{\partial y}\!\left(A\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right)
  \tag{2.4}
  \]

  \[
  F_v=\frac{\partial}{\partial x}\!\left(A\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right)
  +\frac{\partial}{\partial y}\!\left(2A\frac{\partial v}{\partial y}\right)
  \tag{2.5}
  \]

  <p>其中 \(A\) 为水平涡黏系数。</p>

  <p>\(u,v,w\) 的自由表面与底边界条件为:</p>

  <p><strong>在 \(z=\eta\) 处:</strong></p>
  \[
  \begin{align}
  \frac{\partial \eta}{\partial t}
  +u\frac{\partial \eta}{\partial x}
  +v\frac{\partial \eta}{\partial y}
  -w &= 0, \notag\\
  \left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)
  &=\frac{1}{\rho_{0}\nu_{t}}\left(\tau_{sx},\tau_{sy}\right)
  \tag{2.6}
  \end{align}
  \]

  <p><strong>在 \(z=-d\) 处:</strong></p>
  \[
  \begin{align}
  u\frac{\partial d}{\partial x}
  +v\frac{\partial d}{\partial y}
  +w &= 0, \notag\\
  \left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)
  &=\frac{1}{\rho_{0}\nu_{t}}\left(\tau_{bx},\tau_{by}\right)
  \tag{2.7}
  \end{align}
  \]

  <p>
    其中 \((\tau_{sx},\tau_{sy})\) 与 \((\tau_{bx},\tau_{by})\) 分别为表面风应力与底应力在 \(x\)、\(y\) 方向的分量。
  </p>

  <p>
    已知由动量方程与连续方程得到的速度场后,可通过自由表面运动学边界条件求得总水深 \(h\)。
    但更稳健的形式是对局地连续方程做垂向积分,得到:
  </p>

  \[
    \frac{\partial h}{\partial t}
    +\frac{\partial (h\bar{u})}{\partial x}
    +\frac{\partial (h\bar{v})}{\partial y}
    =hS+\hat{P}-\hat{E}
    \tag{2.8}
  \]

  <p>
    其中 \(\hat{P}\) 与 \(\hat{E}\) 分别为降水率与蒸发率;\(\bar{u}\)、\(\bar{v}\) 为水深平均速度:
  </p>

  \[
    h\bar{u}=\int_{-d}^{\eta}u\,dz,\qquad
    h\bar{v}=\int_{-d}^{\eta}v\,dz
    \tag{2.9}
  \]

  <p>
    流体假定不可压缩,因此密度 \(\rho\) 不依赖压力,仅通过状态方程依赖温度 \(T\) 与盐度 \(s\):
  </p>

  \[
    \rho=\rho(T,s)
    \tag{2.10}
  \]

  <p>此处采用 UNESCO(1981)给出的状态方程。</p>
</section>